Nonlocal rheology of dense granular flow in annular shear experiments
نویسندگان
چکیده
منابع مشابه
Dense granular flow rheology in turbulent bedload transport
The local granular rheology is investigated numerically in turbulent bedload transport. Considering spherical particles, steady uniform configurations are simulated using a coupled fluid-discrete-element model. The stress tensor is computed as a function of the depth for a series of simulations varying the Shields number, the specific density and the particle diameter. The results are analyzed ...
متن کاملContinuum modeling of secondary rheology in dense granular materials.
Recent dense granular flow experiments have shown that shear deformation in one region of a granular medium fluidizes its entirety, including regions far from the sheared zone, effectively erasing the yield condition everywhere. This enables slow creep deformation to occur when an external force is applied to a probe in the nominally static regions of the material. The apparent change in rheolo...
متن کاملNonlocal granular rheology: Role of pressure and anisotropy
We probe the secondary rheology of granular media, by imposing a main flow and immersing a vane-shaped probe into the slowly flowing granulate. The secondary rheology is then the relation between the exerted torque T and rotation rate ω of our probe. In the absence of any main flow, the probe experiences a clear yield-stress, whereas for any finite flow rate, the yield stress disappears and the...
متن کاملNonlocal rheology of granular flows across yield conditions.
The rheology of dense granular flows is studied numerically in a shear cell controlled at constant pressure and shear stress, confined between two granular shear flows. We show that a liquid state can be achieved even far below the yield stress, whose flow can be described with the same rheology as above the yield stress. A nonlocal constitutive relation is derived from dimensional analysis thr...
متن کاملRheology and contact lifetimes in dense granular flows.
We study the rheology and distribution of interparticle contact lifetimes for gravity-driven, dense granular flows of noncohesive particles down an inclined plane using large-scale, three dimensional, granular dynamics simulations. Rather than observing a large number of long-lived contacts as might be expected for dense flows, brief binary collisions predominate. In the hard-particle limit, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Soft Matter
سال: 2018
ISSN: 1744-683X,1744-6848
DOI: 10.1039/c8sm00047f